Lifting of model structures to fibred categories

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binary trees and fibred categories

We develop a purely set-theoretic formalism for binary trees and binary graphs. We define a category of binary automata, and display it as a fibred category over the category of binary graphs. We also relate the notion of binary graphs to transition systems, which arise in the theory of concurrent computing.

متن کامل

Fibred and Indexed Categories for Abstract Model Theory

Indexed and Fibred category theory have a long tradition in computer science as a language to formalize different presentations of the notion of a logic, as for instance, in the theory of institutions and general logics, and as unifying models of (categorical) logic and type theory as well. Here we introduce the notions of indexed and fibred frames and construct a rich mathematical workspace wh...

متن کامل

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

Model Structures on pro - Categories

We introduce a notion of a ltered model structure and use this notion to produce various model structures on pro-categories. This framework generalizes the examples of [13], [15], and [16]. We give several examples, including a homotopy theory for G-spaces, where G is a pronite group. The class of weak equivalences is an approximation to the class of underlying weak

متن کامل

Model Structures for Homotopy of Internal Categories

The aim of this paper is to describe Quillen model category structures on the category CatC of internal categories and functors in a given finitely complete category C. Several non-equivalent notions of internal equivalence exist; to capture these notions, the model structures are defined relative to a given Grothendieck topology on C. Under mild conditions on C, the regular epimorphism topolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Homology, Homotopy and Applications

سال: 2011

ISSN: 1532-0073,1532-0081

DOI: 10.4310/hha.2011.v13.n2.a1